Euclidean Norm (np.linalg.norm)
import numpy as np
A = np.array([[1, 2], [1, 3]])
print(A)
# Output:
# [[1 2]
#  [1 3]]
norms = np.linalg.norm(A, axis=1)
print(norms)
# Output: [2.23606798 3.16227766]
Vectorize Functions
np.vectorize allows you to apply a function element-wise to arrays (like a generalized map):
import numpy as np
def my_func(x):
    return x ** 2 + 1
vec_func = np.vectorize(my_func)
arr = np.array([1, 2, 3])
print(vec_func(arr))
# Output: [2 5 10]
Common Numpy Operations
import numpy as np
# Create arrays
a = np.array([1, 2, 3])
b = np.zeros((2, 3))
c = np.ones((3, 3))
d = np.eye(3)  # Identity matrix
# Array math
sum_ab = a + np.array([4, 5, 6])
product = a * 2
# Broadcasting
arr = np.arange(6).reshape(2, 3)
broadcasted = arr + np.array([10, 20, 30])
# Slicing
sub = arr[:, 1:]
Useful Numpy Tips
- Use 
np.mean,np.std,np.sum, etc., for fast statistics. - Use boolean indexing for filtering: 
a[a > 1]. - Use 
np.dotor@for matrix multiplication. - Use 
np.concatenate,np.vstack,np.hstackto combine arrays.